

BITZER Software v6.17.9 rev2773

Предварительный расчет Промышленная Холодильная Компания info@phk-holod.ru

23.10.2022 / Все данные могут быть изменены.

1/6

Выбор: Полугерметичные винтовые компрессоры HS

Исходные данные

модель компрессора Хладагент Темп., используемая в расчете Переохл-е (в конденсаторе)

Перегрев всасыв. паров

HSN8571-125 R22 Темп. "точки росы"

0 K 10,00 K Режим эксплуатации Энергоснабжение Полезный перегрев Дополнит. охлаждение Макс. темп. нагнетания Стандарт 400V-3-50Hz 100%

Автоматически 80,0 °C

Результат

Q [W] Холодопроизвод-сть P [kW] Потребл. мощность I [A] Ток

COP[-] СОР/КПД mLP [kg/h] Массов. расход LP mHP [kg/h] Массов. расход НР Qac [kW] Дополнит. охлаждение tcu [°C] Темп. жидкости pm [bar(a)] ЕСО-давление

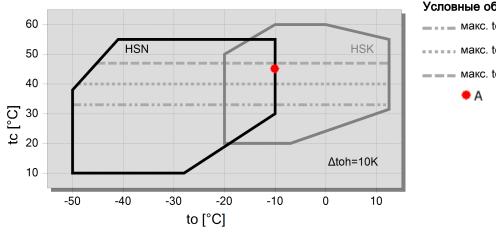
Qsc [kW] Произв-ть переохл-ля (ЕСО)

tc	to	-5°C	-10°C	-15°C	-20°C	-25°C	-30°C	-35°C	-40°C
45°C	Q [W]		224712	184310	149552	119840	94622	73382	55643
	P [kW]		92,8	87,0	81,9	77,2	72,9	68,9	65,1
	I [A]		155,3	146,9	139,3	132,5	126,3	120,6	115,2
	COP [-]		2,42	2,12	1,83	1,55	1,30	1,06	0,85
	mLP [kg/h]		5310	4419	3640	2963	2377	1875	1446
	mHP [kg/h]		5310	4419	3640	2963	2377	1875	1446
	Qac [kW]		31,5	33,3	35,4	37,5	39,5	41,3	42,8
	tcu [°C]		45,0	45,0	45,0	45,0	45,0	45,0	45,0
	pm [bar(a)]								
	Qsc [kW]								
40°C	Q [W] P [kW]		237981 86,7	195762 81,0	159423 75,8	128346 71,3	101958 67,2	79723 63,4	61146 60,0
	I [A]		146,4	138,0	130,5	123,9	118,1	112,9	108,1
	COP [-]		2,74	2,42	2,10	1,80	1,52	1,26	1,02
	mLP [kg/h]		5387	4493	3712	3034	2447	1944	1516
	mHP [kg/h]		5387	4493	3712	3034	2447	1944	1516
	Qac [kW]		20,9	23,4	25,9	28,6	31,1	33,5	35,6
	tcu [°C]		40,0	40,0	40,0	40,0	40,0	40,0	40,0
	pm [bar(a)]								
	Qsc [kW]								
35°C	Q [W]		250403	206475	168645	136276	108774	85586	66200
	P [kW]		81,3	75,6	70,5	66,1	62,1	58,6	55,5
	I [A]		138,4	130,1	122,9	116,6	111,0	106,3	102,1
	COP [-]		3,08	2,73	2,39	2,06	1,75	1,46	1,19
	mLP [kg/h]		5444	4549	3767	3088	2502	1999	1571
	mHP [kg/h]		5444	4549	3767	3088	2502	1999	1571
	Qac [kW]		11,58	14,59	17,67	20,8	23,8	26,6	29,3
	tcu [°C]		35,0	35,0	35,0	35,0	35,0	35,0	35,0
	pm [bar(a)]								-
	Qsc [kW]								

⁻⁻ Расчет невозможен (см.сообщение в окне "точка расчета")

Границы применения Standard HSN8571-125

^{*}в соответствии со стандартом EN12900 (10К перегрев всасываемых паров, 0К переохлаждение жидкости)



BITZER Software v6.17.9 rev2773

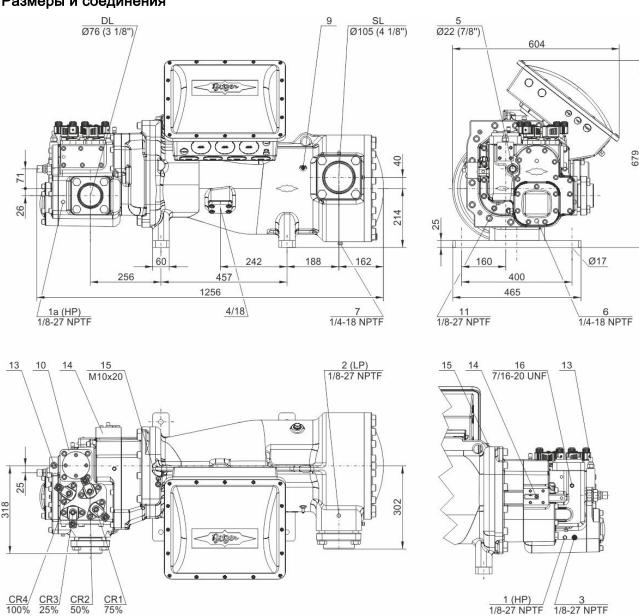
Предварительный расчет Промышленная Холодильная Компания info@phk-holod.ru

23.10.2022 / Все данные могут быть изменены.

2/6

Условные обозначения

макс. tc для частот = 20Hzмакс. tc для частот = 25Hzмакс. tc для частот = 35Hz


Предварительный расчет Промышленная Холодильная Компания info@phk-holod.ru

23.10.2022 / Все данные могут быть изменены.

3/6

Технические данные: HSN8571-125

Размеры и соединения

110 m3/h

BSE170

Технические данные Технические параметры

Of AMUSE EDOMAR OF (200006/MM) 50 EU

Тип масла для R448A/R449A/R454C

Ообемная произв-сть (290000/мин 50 г ц)	4 10 111 /11
Объемная произв-сть (3500об/мин 60 Гц)	495 m³/h
Bec	610 kg
Макс. избыточное давление (НД/ВД)	19 / 28 bar
Присоединение линии всасывания	DN 100

Присоединение линии нагнетания 76 mm - 3 1/8"
Адаптер/запорный вентиль для ЕСО 28 mm - 1 1/8" (Option)
Тил масла для P22

Тип масла для R22 B150SH, B100 (Option) Тип масла для R134a/R404A/R507A/R407A/R407F BSE170

Параметры мотора

Версия мотора

Напряжение мотора (др. по запросу)380-415V PW-3-50HzМаксимальный рабочий ток216.0 A

Предварительный расчет Промышленная Холодильная Компания info@phk-holod.ru

BITZER Software v6.17.9 rev2773

Защита мотора

Измерения шумовых парметров

23.10.2022 / Все данные могут быть изменены.

4/6

Пусковой ток (ротор блокирован)	612.0 A D / 943.0 A DD
Мах. энергопотребление	132,0 kW
Комплект поставки	
Датчик температуры нагнетания	Standard
Стартовая разгрузка	Standard
Контроль расхода масла	SE-B3 (Standard)
Защита мотора	SE-E1 + SE-B3 (Standard), SE-E3 (Standard for 660-
	690V)
Регулирование производительности	100-75-50% or 100-50% (Standard)
Класс защиты	IP54
Доступные опции	
Запорный вентиль на всасывании	Option
Запорный вентиль на нагнетании	Option
ЕСО-присоединение с запорным вентилем	Option

SE-i1 (200-690V)

BITZER Software v6.17.9 rev2773

Предварительный расчет Промышленная Холодильная Компания info@phk-holod.ru

23.10.2022 / Все данные могут быть изменены.

5/6

Полугерметичные винтовые компрессоры HS

HSK = применяется для кондиционирования и среднетемпературного охлаждения:

HSN = применяется для низкотемпературного охлаждения:

Указание относительно границ области применения (см.Техническая информация - Границы области применения)

- * Диаграммы действительны для стандартного режима работы и работы в условиях полной нагрузки
- * В условиях высокого давления режим частичной загрузки ограничен (см. Границы области применения в руководстве по проектированию SH-100)
- * В режиме работы с экономайзером максимально допустимая температура испарения смещается на 10 К вниз, изза существующей опасности избыточной компрессии и перегрузки мотора из-за высокого расхода хладагента. При изменении температуры испарения с высокой на более низкую порт экономайзера должен оставаться закрытым до тех пор, пока температура не опустится ниже максимально допустимой и не будет достигнут стабильный режим работы (например, управление портом экономайзера через реле низкого давления). О возможности использование системы экономайзера в условиях высокой температуры испарения следует проконсультироваться со специалистами "БИТЦЕР".

HS 64/74

* Регулирование производительности компрессоров в режиме работы с экономайзером ограничивается одной ступенью регулирования производительности (CR 75%).

По вопросам настройки режимов работы и особенностей конструкции системы следует проконсультироваться со специалистами "БИТЦЕР".

Данные по звуковому воздействию

Данные справедливы при эксплуатации на 50Гц (ІР-агрегаты на 60Гц) и R404A.

Уровень звукового давления: значения справедливы при измерении на открытой местности при полусферическом распространении звука с расстояния 1 м от источника. Подробнее смотрите Техническую Информацию "Шумовые параметры".

Данные по производительности сертифицированные ASERCOM

ASERCOM - Ассоциация Европейских производителей компонентов холодильного оборудования проводит сертификацию данных по производительности компрессоров. Высокий уровень этой сертификации обеспечивается и поддерживается:

- * проверками достоверности данных, проводимыми экспертами,
- * регулярными измерениями, проводимыми независимыми институтами.

Необходимость приложения значительных усилий для сертификации объясняет ограниченное количество сертифицированных моделей. В связи с этим, пока не все модели компрессоров BITZER на сегодня сертифицированы. В программе вы увидите специальный знак в окне результатов расчёта соответствующего компрессора справа внизу под таблицей, а также в распечатке расчётных данных. Список всех сертифицированных компрессоров, а также подробную информацию о комитете ASERCOM вы сможете посмотреть на сайте.

Обозначения присоединительных штуцеров на изображениях в окне меню "Тех. Данные/Размеры":

- 1 Реле высокого давления (НР)
- 1а Дополнительный штуцер высокого давления
- 1b Присоединение для трансдюсера высокого давления (НР)
- 2 Реле низкого давления (LP)
- 2а Дополнительный штуцер низкого давления
- 2b Присоединение для трансдюсера низкого давления (LP)
- 3 Присоединение для датчика температуры нагнетаемого газа (НР)
- 4 Присоединение для экономайзера (ЕСО)
- HS.85: ECO-адаптер с соединительным патрубком (опция)
- 5 Присоединение впрыска масла
- 6 Присоединение для замера давления масла у HS.85 и OS.85:
- Слив масла (корпус компрессора)
- 7 Слив масла (моторная часть корпуса)
- 7а Слив масла (фильтр всасываемого газа)

Предварительный расчет Промышленная Холодильная Компания info@phk-holod.ru

BITZER Software v6.17.9 rev2773

23.10.2022 / Все данные могут быть изменены.

6/6

- 7b Слив масла из полости за сальником вала (сервисное присоединение)
- 7с Трубка слива масла (сальник вала)
- 8 Резьбовое отверстие для крепления опоры
- 9 Резьбовое отверстие для фиксации патрубка (ECO и линии LI)
- 10 Сервисный штуцер (масляный фильтр)
- 11 Слив масла (масляный фильтр)
- 12 Мониторинг масловпускного клапана
- 13 Контроль масляного фильтра
- 14 Реле протока масла
- 15 Винт заземления корпуса
- 16 Предохранительный клапан давления (камера масляного фильтра)
- 17 Сервисный штуцер для сальника вала
- 18 Жидкостной впрыск (LI)
- 19 Модуль управления
- 20 Индикатор положения золотника
- 21 Датчик уровня масла
- 22 Присоединение для трансмиттера давления масла
- 23 Подключение для возврата масла и газа (для систем с затопленным испарителем, адаптер опция)
- 24 Доступ к ограничителю циркуляции масла
- SL Линия всасывания
- DL Линия нагнетания

Размеры с допусками по EN ISO 13920-B.