Type FQS

GENERAL DESCRIPTION

- For use on liquid lines such as water, ethylene glycol, or any non-corrosive fluid in chillers, pumps, condensers, boilers, etc.
- With S.P.D.T. contact mechanism.
- Paddle consists of three segments that can be removed or trimmed for use in 1 to 6" pipe.
- Drip proof models: Available upon request.
(€ mark applicable (available upon request)
UL listed (available upon request)

SPECIFICATIONS

Catalog No.	Paddle Size	Max.Working Pressure MPa\{kgf/cm $\}$		Fluid Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Max. Flow Velocity $(\mathrm{m} / \mathrm{s})$	Wt. (kg)	
	Size	Style					
FQS-U30G	$1^{\prime \prime}+2^{\prime \prime}+3^{\prime \prime}$	$1^{\prime \prime}$	R	0.98	5 to 80	2	0.6
10$\}$							

- Enclosure: IP20 (IP62 model: available upon request.)

ELECTRICAL RATINGS

Rated Voltage (V)		Power Factor $(\cos \phi)$	125 V. AC	250 V. AC
Non-Inductive Current		1	15	15
Inductive Current	Full Load	0.75	3.5	2.5
	Locked Rotor	0.45	21	15

DIMENSIONS

* 1 Connection screwed length to a Tee joint is $12 \pm 1.2 \mathrm{~mm}$.

OPERATION ADJUSTMENT RANGE TABLE

- When the operating value is not specified, the flow switch is shipped with the operating value set around the minimum flow rate.
- When you turn the flow adjusting screw clockwise, the operating point goes up. When you turn it counterclockwise, the operating point goes down.
- When more than two paddles is attached, you can change the flow rate adjustment range by removing the paddles one by one in order of the longer paddle first.

Pipe Size	Paddle Size	Adjustment range (L/min)			
		Min.		Max.	
		Flow Decrease	Flow Increase	Flow Decrease	Flow Increase
$1{ }^{\prime \prime}$	$1 "$	18	28	45	55
1-1/4"		43	53	100	120
1-1/2"		63	78	135	162
$2 "$	1"+2"	50	65	150	180
	$1{ }^{\prime \prime}$	151	181	220	264
2-1/2"	1"+2"	105	126	355	426
	$1{ }^{\prime \prime}$	356	427	360	432
$3 "$	$1^{\prime \prime}+2^{\prime \prime}+3^{\prime \prime}$	100	120	225	270
	1"+2"	226	271	480	576
	1"	481	577	510	612
$4 "$	$1^{\prime \prime}+2^{\prime \prime}+3^{\prime \prime}$	200	240	385	462
	1"+2"	386	463	820	984
	1"	821	985	870	1044
5"	$1^{\prime \prime}+2^{\prime \prime}+3^{\prime \prime}$	350	420	594	713
	1"+2"	595	714	1265	1518
	1"	1266	1519	1342	1610
6"	$1^{\prime \prime}+2^{\prime \prime}+3^{\prime \prime}$	530	636	836	1003
	1"+2"	837	1004	1780	2136
	$1 "$	1781	2137	1890	2268

[^0]
[^0]: * 2 Flow decrease ... Flow amount at which the switch operates on flow decrease.

 Flow increase ... Flow amount at which the switch operates on flow increase.

